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Abstract

Contactless fluid level detection in process equipment is an important challenge for the
process automation industry, especially under high-pressure conditions. In this study, a method is
presented, which permits the contactless measurement of liquid levels in thin opaque capillaries at high
pressures. The method is based on the mass dependence of the flexural resonance frequencies of a finite
section of a tube. These resonance frequencies are determined from the complex electrical impedance
of a slitted toroid coil exciting a magnet attached to the tube. The system has been theoretically
described using a set of two Bernoulli–Euler beams, resulting in an analytical solution for the equation of
motion. To validate the model, experiments have been performed on a thick-walled stainless steel capillary
partly filled with mercury. The model is in good agreement with the experimental data. Moreover, the
sensitivity of the method appears to be adequate as a fluid level indicator for control purposes in industrial
applications.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In a growing number of chemical and pharmaceutical processes, near critical and supercritical
fluids are replacing traditional organic solvents. In particular, high-density carbon dioxide is
see front matter r 2004 Elsevier Ltd. All rights reserved.
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increasingly used in applications such as extractions [1], polymer synthesis and processing [2] as
well as pharmaceutical processing [3,4]. Depending on the fluid used, these processes are operated
at much higher pressures than conventional processes, typically above 5.0MPa. Additionally, in
pharmaceutical and food processes, contactless setups are preferred, to reduce the risk of
contamination. Consequently, constraints are imposed on the process equipment, including the
methods for liquid level detection.
For the detection of liquids in opaque tubes at fixed positions, a technique based on the

intensity of a focused ultrasonic sound beam transmitted through the tube can be used [5].
However, the resolution of signal sharply decreases with increasing wall thickness of the tubing,
rendering the technique unsuitable for high-pressure systems. In this contribution, a technique is
presented for the detection of variable liquid levels under high pressures. The method is based on a
new implementation of the well-known effect of lowering the resonance frequency of an elastic
body by mass loading. For this purpose, a section of the tube is clamped at two points and a tiny
magnet is attached to the center. A slitted toroid coil excites the section of the tube in transversal
resonance. The complex electrical impedance of this same coil is used to determine the resonance
frequency. This enables a constructionally simple and contactless setup. Moreover, the method
allows for measurements in thin, opaque capillaries, at high pressures and increased
temperatures.
To determine the sensitivity of the system, it has been described as a set of two Bernoulli–Euler

beams, under the assumption of free vibration. An analytical solution for the equation of motion
has been derived. To validate the model, experiments with a realistic stainless steel capillary partly
filled with mercury are presented.
2. Theory

In Fig. 1 a clamped tube partly filled with liquid is shown, which is considered to be in free
vibration. The length between the clamps is defined L. The liquid–gas interface in the tube is
marked by an abrupt change in mass density from m1 to m2 and is positioned at the origin. The
distance between the origin and the bottom clamp is defined ld. The system can be regarded as a
set of two Bernoulli–Euler beams, each with a uniform bending stiffness EI and a constant mass
density mi [6,7]. The equation of motion is given by

EI
q4yi

qx4
þ mi

q2yi

qx2
¼ 0; (1)

with mi

mi ¼
m1; �ldoxo0;

m2; 0oxoL � ld :

(
(2)

The solutions of Eq. (1) are y1(x, t) in the range�ldoxo0 and y2(x, t) in the range 0oxoL�ld.
The boundary conditions at x ¼ �ld and x ¼ L � ld are given by

y1ð�ld ; tÞ ¼ y01ð�ld ; tÞ ¼ y2ðL � ld ; tÞ ¼ y0
2ðL � ld ; tÞ ¼ 0: (3)
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Fig. 1. Schematic representation of a clamped tube partly filled with liquid.

M.A. Jacobs et al. / Journal of Sound and Vibration 285 (2005) 1039–1048 1041
The continuity and equilibrium conditions at the origin are

y1ð0; tÞ ¼ y2ð0; tÞ; y0
1ð0; tÞ ¼ y0

2ð0; tÞ;

y001ð0; tÞ ¼ y00
2ð0; tÞ; y0001 ð0; tÞ ¼ y000

2 ð0; tÞ:
(4)

The general solutions of the equation of motion for a uniform beam [8] are

yjðx; tÞ ¼ CT
j GjðxÞe

iot; (5)

with the displacement function and constants given by

CT
j ¼ ðCj1 Cj2 Cj3 Cj4 Þ;

GT
j ðxÞ ¼ ð sin kjx cos kjx sinh kjx cosh kjx Þ; ð6Þ

where k4
j ¼ mjo2=EI :

Applying the continuity and equilibrium conditions to the general solution, the following
relation is obtained:

C1 ¼ FC2; (7)

with F given by

F ¼

gg1 0 gg2 0

0 g1 0 g2
gg2 0 gg1 0

0 g2 0 g1

0
BBBB@

1
CCCCA; (8)
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where g ¼ ðm2=m1Þ
1=4; g1 ¼ ð1þ g2Þ=2 and g2 ¼ ð12g2Þ=2: Substitution of Eqs. (5) and (7) into the

boundary conditions Eq. (3) results in

SC1 ¼ 0; (9)

with

S ¼

�gg1 sin u1 � gg2 sinh u1

gg1 cos u1 þ gg2 cosh u1

sin u2

cos u2

0
BBB@

g1 cos u1 þ g2 cosh u1

g1 sin u1 � g2 sinh u1

cos u2

� sin u2

�gg2 sin u1 � gg1 sinh u1

gg2 cos u1 þ gg1 cosh u1

sinh u2

cosh u2

g2 cos u1 þ g1 cosh u1

g2 sin u1 � g1 sinh u1

cosh u2

sinh u2

1
CCCA

; (10)

where u1 ¼ k1ld and u2 ¼ k2ðL2ldÞ: A non-trivial solution is obtained when

det S ¼ 0: (11)

After some rearrangement and simplification, the analytical solution of Eq. (11) is given by

ðg21 þ g22Þ 1� cos u1 cos u2 cosh u1 cosh u2½ � þ 2g1g2 cos u1 cosh u1 � cos u2 cosh u2½ �

þ gg1 sin u1 sin u2 cosh u1 cosh u2 � sinh u1 sinh u2 cos u1 cos u2½ �

þ gg2 cos u2 sin u2 sinh u1 cosh u2 � sin u1 sinh u2½ �

þ g2 sin u1 sin u2 sinh u1 sinh u2 ¼ 0: ð12Þ

In the special case of a uniform tube (ld ¼ 0 or ld ¼ L), Eq. (12) reduces to

cos u cosh u ¼ 1 (13)

for ga0; with u ¼ ðmj=EIÞ1=4L
p
oi: Numerically approximated, the solutions of Eq. (13) are

u 
 0; 1:5056p; 2:4998p and u 
 ðn þ 1
2
Þp for n ¼ 3; 4; 5y where n corresponds to the vibrational

mode. The Bernoulli–Euler theory is only applicable to long slender beams. For beams with
compact cross sections, shear and rotation cannot be neglected. For smaller wavelengths, the
Bernoulli–Euler theory is extended to the Timoshenko beam theory, which includes shear and
rotation [9]. The difference in the frequency of the fundamental mode predicted by the
Bernoulli–Euler and Timoshenko theories depend strongly on the types of support. For uniformly
loaded double clamped beams with a length-diameter ratio of more than 50, the predicted
fundamental mode frequency differs less than 5% [10].
3. Experimental

The experimental setup, shown in Fig. 2, consists of a steel capillary (rsteel=7950 kg/m3)
clamped by two 20mm clamps. The distance between the clamps is 160mm. The capillary has
inner and outer diameters of 1.0 and 3.2mm, respectively. At the bottom, the steel capillary is
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Fig. 2. Schematic view of the experimental setup. (A) Clamped tube configuration with attached magnet, coil and

impedance meter. (B) Test setup with clamped steel capillary at the left side and a glass capillary at the right side,

connected by flexible tubing.
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connected to a glass capillary by flexible tubing. The glass capillary has inner and outer diameters
of 2.1 and 3.9mm, respectively. The two connected tubes are partly filled with mercury
(rmercury=13540kg/m3). To excite the steel tube, a small magnet (m=0.15 g) is attached to the
center. The magnetic field of the magnet is perpendicular to the axis of the tube and in line with
the slit in the toroid coil, as shown in Fig. 2A. The coil is connected to an impedance
analyzer (Hioki 3532 LCR, 70.1Hz), controlled by a computer. The resonance frequency of the
tube is obtained from a maximum in the spectrum of the coil impedance modulus. This setup
allows measurement of the odd modes of vibration, containing an antinode at half the tube length.
The resolution of the frequency setting on the analyzer is 0.1Hz in the low frequency range. In the
high frequency range, the resolution is 1Hz, which is too large to detect the higher modes of
vibration. The mercury level in the glass tube is visually observed using a cathetometer (Bleeker,
70.1mm).
4. Results and discussion

4.1. Tube partially filled with mercury

In Fig. 3 the shift in frequency for the fundamental mode of a steel tube partly filled with
mercury is shown. The experimental data are correlated with the Bernoulli–Euler model. In the
specified setup, with m1=m2 
 1:184 (g 
 0:956), the frequency shifts from 509.9 to 468.5Hz.
Calculating the bending stiffness EI of the tube from the frequency of the empty tube and
applying the tube dimensions and material densities, a shift of the frequency to 468.54Hz is
predicted. As shown in Fig. 3, the model excellently relates the filled tube frequency to the empty
tube frequency. However, for partially filled tubes, the experimental data appear to be shifted to
lower filling heights. This is caused by the capillary action of mercury in these small tubes, since
mercury exhibits a non-wetting behavior on both glass and steel surfaces, causing a negative
capillary action. Eq. (14) shows the difference in height between the steel and glass (vertical) tubes,
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Fig. 3. Resonance frequency as a function of filling height of a steel capillary partly filled with mercury. Data before

(J) and after correction for capillary action (K, ca), and the correlation with the Bernoulli–Euler model (—) is shown.
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which is caused by capillary action:

dh ¼
2g
rg

r1 cos yc;2 � r2 cos yc;1

r1r2
: (14)

Here g is the surface tension, y is the contact angle and r are the tube radii. After correction of
the experimental data for capillary action, excellent agreement between the model calculations
and the data is observed. At least for the fundamental mode, these results justify the assumption
that the measured resonance frequency can be described by the natural frequency of the tube.
Furthermore, in the applied setup the mass of the magnet attached to the tube appears not to have
a measurable influence on the characteristics of the response of the resonance frequency to
changing fluid heights. For application of the technique as an indicator for liquid levels in a tube,
only the fundamental mode is applicable. The plateaus occurring at higher modes result in regions
with a very small gradient in frequency. For the same reason, practical measurements of fluid
levels are limited to the midsection of the tube, approximately 0.25old/Lo0.75, thus limiting the
effective measuring region of the tube to half the tube length.
The effects of finite transversal and rotational stiffness of the clamps on the measurement

accuracy have not been addressed in this study. However, these effects may be relevant for
prolonged measurement times, and are therefore subject to further study.

4.2. Model analysis

The relative frequency change as a function of filling height is calculated by Eq. (11) or (12),
respectively. In Fig. 4 the frequency ratios as a function of the relative filling height are shown for
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Fig. 4. Bernoulli–Euler model calculations of the relative frequency change as a function of relative filling height of the

tube, with g ¼ 0:95 (m1/m2E1.228). Vibrational modes 1 ( ), 2 ( ), 3 (—) and 10 (- - -) are shown.
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vibrational modes 1, 2, 3 and 10. Mode 10 is the highest mode, which can be described with the
Bernoulli–Euler theory. In the calculations g ¼ 0:95 is used, corresponding to a relative mass
density increase of 22.77%. All modes show the same relative change in frequency for a fully filled
tube. Similar behavior was observed for simply supported [6] and clamped-free [7] geometries.
For the fundamental mode, a continuous decrease of the frequency with increasing fluid levels is

observed, with a steep gradient near a relative filling height of 0.5. At higher vibrational modes,
regions of non-varying frequencies (plateaus) are observed. These plateaus can be attributed to
the occurrence of vibrational nodes. The fundamental mode contains no nodes. For higher modes,
each mode adds an additional node. Near a node, displacements and accelerations are small,
resulting in less added mass effects. The reverse is true near antinodes, where accelerations are
large and a significant shift in frequency with increasing fluid height is observed.
Though symmetric boundary conditions are applied, the curves for all modes are slightly

asymmetric, due to the asymmetric mass distribution of the tube. For all modes, the central node
or antinode is slightly shifted towards the fluid filled side. The actual shift in mode shape depends
on the mass density ratio and the filling height. In Fig. 5A, the fundamental mode shape is shown
for a relative filling height of 0.5 and a g of 0.7, which corresponds to an increase in mass density
of 316.5%. Such a large difference in mass densities combined with the fluid level near the
antinode, results in a large shift in the position of the antinode towards the filled side of the tube.
In Fig. 5B, the shift in mode shape is shown as a function of filling height of the tube. In these
calculations, a more moderate mass density ratio of 1.229 (g ¼ 0:95) is applied, resulting in smaller
changes in mode shape. The largest shifts of the antinode are observed for filling heights near the
antinode (ld/L)�0.5, where displacements are large. The shift in frequency for a filled tube is a
unique function of the mass density ratio of the two sides of the tube. The ratio is related to tube
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Fig. 5. Shifts in the fundamental mode shape y(x). (A) Mode shape of a half filled tube with g ¼ 0:7 (—,
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Fig. 6. Relative frequency shift of a filled tube as a function of the relative mass density ratio.
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dimensions and material densities by

m1

m2
¼

d2
out � 1�

rliquid
rtube

� 	
d2
in

d2
out � d2

in

: (15)

In Fig. 6 the frequency shift of a filled tube is shown as a function of the mass ratios. The
frequency shows an asymptotic decline to zero. A reduction in frequency of 50% is already
reached for a mass ratio m1/m2 of 4. These shifts in relative frequency are the same for all
vibrational modes. However, for higher modes the natural frequency of the empty tube increases



ARTICLE IN PRESS

M.A. Jacobs et al. / Journal of Sound and Vibration 285 (2005) 1039–1048 1047
quadratically

on

o1
¼

un

u1


 �2

; (16)

where n corresponds to the mode number and un is the nth solution of Eq. (13), excluding the
trivial solution u ¼ 0:
4.3. Sensitivity for low density liquids

To obtain insight in the accuracy of measurements with less dense fluids than mercury, the
sensitivity of the filling height to a change in frequency has been determined for water in steel
high-pressure tubes. For this purpose, the change of the liquid height Dld ; corresponding to a
change in frequency of 0.2Hz at a filling of L=ld ¼ 0:75 is calculated for three commercially
available Swagelocks high-pressure steel tubes with increasing diameters as a function of the
length of the tube between the clamps. The tubes have outer diameters (O.D.) of 1

8
; 1
4
and 1

2
in and

wall thicknesses of 0.028, 0.035 and 0.065 in, respectively, which correspond to the minimum
available thickness suitable for a working pressure of 30MPa at 475K. In Fig. 7, the results are
shown for clamped tube lengths of 10�O.D. to 160mm. All tubes show a progressively
decreasing accuracy with increasing length of the clamped section. If we accept a maximum Dld of
1mm at an accuracy in the frequency of 0.2Hz, the maximum lengths are 114mm for the 1

8 in tube
and 125mm for the 1

4
in tube. For the 1

2
tube, the best achievable accuracy is 1.9mm at the

minimum length of 10�O.D.. As mentioned above, the maximum detectable range of fluid levels
is half these clamped-section lengths. In general, the sensitivity study shows that the operating
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Fig. 7. Sensitivity of the calculated filling height of water at L=d ¼ 0:75 to a frequency change of 0.2Hz as a function of
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window of the contactless liquid detection method is sufficiently broad, within the limits of the
tube diameter required for the applied pressure.
5. Conclusions

In this work, the use of transversal resonance frequencies as a contactless indication method for
the liquid height in a tube has been investigated. A Bernoulli–Euler vibrational analysis for a
partly filled tube has been performed, resulting in an analytical solution of the equations of
motion. The analysis shows plateau regions in the frequency shift for higher vibrational modes,
thus limiting the technique to the fundamental mode. To verify the model calculations,
experiments have been carried out on a realistic steel capillary filled with mercury. The model
calculations are in good agreement with the data. In the experiments, the use of the complex
electrical impedance of a toroid coil enclosing the tube with a magnet attached has proven to be a
good indicator for the detection of the natural frequency of the tube. Using the fundamental
mode, accurate measurements are limited to the midsection of the tube, where the largest
frequency gradient occurs. For detection of mercury in tubes with inner diameters below 10mm,
the capillary action of the mercury has to be taken into account. The experiments indicate a fluid
level detection sensitivity adequate for control purposes in industrial automation applications.
The constructional simplicity of the method and its contactless setup, as well as the ability to be
used in high-pressure systems, makes the technique a versatile tool for fluid level detection in a
wide variety of industrial applications such as chemical, pharmaceutical and food processes.
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